ID Card Dipotassium hexachloropalladate Version 19 December 2016 #### Notes: - This ID card is used to support the substance sameness discussions in SIEFs and to describe the substance to the best of the SIEF members' knowledge. - It also aims at grouping communications relevant to the request of available data or information, the approval of the proposed Lead Registrant and the registration strategy with the SIEF. - It is the responsibility of each individual registrant to identify their substance and to report company-specific identity in their Registration Dossier (section 1 of IUCLID). #### **DISCLAIMER** All data and information contained in this document shall be treated by the receiving party (i) in full confidence with the adequate respect of any confidential and/or proprietary nature of such information and (ii) only in the framework of the purpose of agreeing on substance sameness, Lead Registrant and overall REACH Strategy for the concerned Substance under REACH (the 'Purpose'). The receiving party (and any representative) shall not be allowed to use or circulate any or all parts of this document for any other purpose than the Purpose, without the prior written consent of the European Precious Metals Federation (EPMF). The content provided in this document is given for the Purpose and as such, no guarantee or warranty whatsoever (expressed or implied) is given as to its accuracy, completeness, merchantability or fitness for any particular purpose which the receiving party may have. In any case, any use by the receiving party would be made at its sole risk and liability. #### 1. Identification of the substance Table 1. Identification of the substance | | Original (in EC inventory) | |------------------|---------------------------------| | Name | Dipotassium hexachloropalladate | | EC number | 240-974-6 | | CAS number | 16919-73-6 | | Description | Not available | | Composition type | Mono-constituent substance | # 2. Synonyms and other identifiers of the substance Table 2. Synonyms and other identifiers of the substance | IUPAC name | Dipotassium hexachloropalladium(2-) | |--|--| | CAS name | | | Abbreviations | | | Other commercial, brand or international names | Palladate(2-), hexachloro-, dipotassium
Potassiuim hexachloropalladate(IV)
Potassium chloropalladate(IV) | | Other identity codes | | #### 3. Substances (with core identifiers) also falling under this substance (with justification) #### None 4. Information related to molecular and structural formula of the substance European Precious Metals Federation aisbl E: info@epmf.be W: www.epmf.be p1 ID Card Table 3. Information related to molecular and structural formula of the substance | Molecular formula | Cl6K2Pd | |--|--------------------------------------| | Structural formula | CI CI K+ K+ | | Smiles notation | [K+].[K+].Cl[Pd-2](Cl)(Cl)(Cl)(Cl)Cl | | Optical activity | | | Typical ratio of (stereo) isomers | | | Molecular Weight / Molecular
Weight range | 397,33 g/mol | #### 5. Typical composition of the substance | | Name | Symbol /
Formula | Min & Max
concentrations
(%)§ | Typical concentration (%) ^{§§} | |----------------------|---|---|-------------------------------------|---| | Main constituent(s)* | Dipotassium hexachloropalladate | Cl6K2Pd | 99 - 100\$ | > 99 | | Impurity(ies)# | Several minor (especially metallic) impurities which do not affect the classification of the substance because of their non-hazardous nature or because they do not exceed the classification cut-off limits in the substance | e.g. Ag, Au,
Cu, Ir, Pb,
Pt, Rh, Ru | 0 - 1 | < 1 | ^{* ≥ 80 % (}w/w) for mono-constituent substances; ≥ 10 % (w/w) and < 80 % (w/w) for multi-constituent substances. p2 The composition given above is typical and should therefore represent the majority of Dipotassium hexachloropalladate as manufactured and/or imported in the EEA market. Dipotassium hexachloropalladate containing less than 99 % Dipotassium hexachloropalladate may still be considered to be the same for the purpose of registration under REACH and may be referred to as impure Dipotassium hexachloropalladate to distinguish if from the typically pure Dipotassium hexachloropalladate. ### 6. Information on appearance, physical state and properties of the substance Table 4. Appearance / physical state / properties of the solid substance | Physical state | Solid | |-----------------------------|-------------------------| | Physical form* | Crystalline / Amorphous | | Appearance | Red solid | | Particle size** | Fine to coarse powder | | Does the solid hydrolyse?## | Yes | | Is the solid hygroscopic?§ | No | E: info@epmf.be W: www.epmf.be **ID Card** [#] An impurity is an unintended constituent present in a substance, as produced. It may originate from the starting materials or be the result of secondary or incomplete reactions during the production process. While impurities are present in the final substance, they were not intentionally added. [§] Concentration ranges define the substance sameness criteria agreed by all Consortium Members in preparation of the communication with other SIEF members. ^{§§} Typical concentration refers to the representative sample used for testing. ^{\$} Corresponds to 26,5 – 26,8 % Pd. #### 7. Analytical data Annex VI of REACH requires the registrant to describe the analytical methods and/or to provide the bibliographical references for the methods used for identification of the substance and, where appropriate, for the identification of impurities and additives. This information should be sufficient to allow the methods to be reproduced. Table 5. Analytical methods for identification of the substance | Parameter / Method | Recommended for substance identification and sameness check | Applicable | Not applicable or not recommended | |---|---|------------|-----------------------------------| | Elemental analysis | | | | | ICP (ICP-MS or ICP-OES) | X | | | | Atomic absorption spectroscopy (AAS) | | | | | Glow discharge mass spectrometry (GDMS) | | | | | Molecular analysis | | | | | Infrared (IR) spectroscopy | X | | | | Raman spectroscopy | | | Х | | Mineralogical analysis | | | | | X-Ray Fluorescence (XRF) | | Х | | | X-Ray Diffraction (XRD) | X | | | | Morphology and particle sizin | g | | | | Electron microscopy (SEM, TEM, REM)* # | | | | | Laser diffraction* # | Х | | | | Particle size by other means (e.g. sieve analysis)# | | | | | Surface area by N-BET*# | X | | | | Other | | | | | _ | | | | ^{*} Analytical techniques particularly (but not exclusively) relevant for nanomaterials. #### 8. Lead Registrant C. Hafner (Germany) volunteers to be the Lead Registrant for Dipotassium hexachloropalladate. The EPMF will provide support to the Lead Registrant as laid down in the EPMF Agreement. E: <u>info@epmf.be</u> W: <u>www.epmf.be</u> p3 ID Card ^{*} Crystalline form: solid material whose constituent atoms, molecules, or ions are arranged in an ordered pattern extending in all three spatial dimensions. Amorphous form: solid material whose constituent atoms, molecules, or ions are randomly arranged. ^{**} Nanoform: particles in the size range 1 - 100 nm (for full definition of a nanomaterial, see http://ec.europa.eu/environment/chemicals/nanotech/index.htm#definition). Fine powder: particles in the size range 100 - 2.500 nm. Coarse powder: particles in the size range 2.500 nm - 1 mm. Massive object: particles in the size range > 1 mm. [#] Hydrolysis: decomposition (cleavage of chemical bonds) by the addition of water. [§] Hygroscopic substance: readily attracts moisture from its surroundings in open air, through either absorption or adsorption. [#]The choice of the technique for particle size depends on the size of the material as manufactured/imported/placed on the market/used. ### 9. REACH Strategy The table below presents the overall Registration Strategy for Dipotassium hexachloropalladate based on the information available to the EPMF by the date given above on the document. The Registration Dossier will be prepared for the highest substance status (information requirements associated to a substance or Article 10 Registration being higher than an intermediate handled under strictly controlled conditions or Article 17 or 18 one) and associated tonnage band. The recap below therefore reflects the scope of work of the EPMF for Dipotassium hexachloropalladate and sets the minimum and maximum set of information that will be gathered and/or produced when preparing the Registration Dossier for Dipotassium hexachloropalladate as described in this ID Card. If higher information requirements are necessary, these can be included in the Registration dossier (if EPMF is made aware of these additional requirements in-time) as an update to the already submitted dossier. Table 6. REACH strategy for the substance (basis for REACH Registration preparation) | Item | Description | |--------------------------|--| | REACH category | Mono-constituent substance | | Highest status | Non-SCC intermediate | | Highest tonnage band | 10 – 100 t/a | | Information requirements | Available / Existing + Annex VII + Annex VIII | | Existing classification* | Acute Tox. 4 (H302) (oral) Skin Irrit. 2 (H315) Eye Dam. 1 (H318) Skin Sens. 1B (H317) Aquatic acute 1 (H400) Aquatic chronic 1 (H410) Acute M-factor 10 Chronic M-factor 10 | | Registration deadline | 2018 | ^{*} For the pure form, as in the REACH registration dossier #### 10. Scope of the Registration Dossier The uses included in this Registration Dossier are listed on the EPMF website. ## 11. Analytical reference information Below the results of IR analysis of a reference sample used for testing. Spectrometer: Infrared spectrometer Tensor 27 Spectral range: 4000 - 300 cm-1 Resolution: 2 cm-1 Scans: 32 scans Temperature: ambient Sample preparation: Nujol mull, undefined layer CsJ E: info@epmf.be W: www.epmf.be ID Card Figure 1. Typical infrared spectrum of dipotassium hexachloropalladate