

Soil ecotoxicity and dissolution of a marketed nanosilver product - a direct comparison with ionic silver

J Mertens, K Arijs, E Smolders, D Leverett, K Oorts

Introduction

- Nanomaterials:
 - engineered for specific phys-chem and biological characteristics
 - reactivity and behaviour:
 - dependent on properties (like specific surface area)
 - might differ from bulk form
- EU-REACH:
 - register substances put on EU market if >1 t/y
 - REACH registration dossier Ag metal includes nanosilver

- **Substance Evaluation** by NL (started in 2014)
 - \rightarrow concern related to **nanoAg**
 - \rightarrow request for additional data: comparison nanoAg vs Ag salt
 - TIER1:
 - ecotox testing nanoAg vs ionic Ag:
 - toxicity to algae (OECD 201)
 - long-term toxicity to aquatic invertebrates (OECD 211)
 - toxicity to soil microorganisms (OECD 216) in 3 different soils
 - proper characterisation nanosilver
 - **dissolution rate** in the specific test media
 - information on **uses** of nanoAg
 - **TIER2** (*only if in TIER1: toxicity nanoAg > ionic Ag!*)
 - quantitative info on fate of nanoAg in soil

FIER1.

Substance Evaluation by NL (started in 2014)

- \rightarrow concern related to **nanoAg**
- \rightarrow request for additional data: comparison nanoAg vs Ag salt

 ecotox testing nanoAg vs ionic Ag (aquatic & soil)
Poster TH081 'REACH Substance Evaluation of silver – justification of read-across from ionic silver to nanosilver'

- toxicity to soil microorganisms (OECD 216) in 3 different soils
- proper characterisation nanosilver
- dissolution rate in the specific test media
- information on **uses** of each registered Ag nanoform
- **TIER2** (only if in TIER1: toxicity nanoAg > ionic Ag!)
 - quantitative info on fate of nanoAg in soil porewater & solid fraction

- Substance Evaluation by NL (started in 2014)
 - \rightarrow concern related to **nanoAg**
 - \rightarrow request for **additional data**: comparison nanoAg vs Ag salt
 - TIER1:
 - ecotox testing nanoAg vs ionic Ag (aquatic & soil)
 - toxicity to algae (OECD 201)
 - long-term toxicity to aquatic invertebrates (OECD 211)

texicity to soil microorganisms (OECD 216) in 3 different soils

• proper characterisation nanosilver

Poster **MO410** 'The aquatic ecotoxicity of a marketed nanosilver product – a direct comparison with ionic silver'

- **TIER2** (only if in TIER1: toxicity nanoAg > ionic Ag!)
 - quantitative info on fate of nanoAg in soil porewater & solid fraction

- **Substance Evaluation** by NL (started in 2014)
 - \rightarrow concern related to **nanoAg**
 - \rightarrow request for **additional data**: comparison nanoAg vs Ag salt
 - TIER1:
 - Ecotox testing nanoAg vs ionic Ag (aquatic & soil)
 - toxicity to algae (OECD 201)
 - long term texicity to aquatic invertebrates (OECD 211).

toxicity to soil microorganisms (OECD 216) in 3 different soils

proper characterisation nanosilver

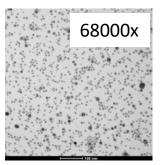
Focus of this presentation

cfr. 'Transformation-dissolution reactions partially explain adverse effects of metallic silver nanoparticles to soil nitrification in different soils'

by Bollyn et al

(accepted for publication in Environmental Toxicology and Chemistry)

Test setup (1/3)


- Test compounds:
 - nanosilver ('*nanoAg*'):
 - aqueous suspension (37% Ag), spherical particles
 - mean prim. particle size 8.4 nm, volume SSA: 714 m² cm⁻³
 - AgNO₃ as silver salt:
 - 63.5% Ag (purity >99.9%)
- Soils:
 - European arable soils (0-20 cm)

	рН	OC [%]	Sand/silt/clay [%]	CEC [cmol _c kg ⁻¹]	Ag _{bg} [mg kg ⁻¹]
Rots (FR)	7.3	1.3	20/50/10	14.3	0.4
Lufa 2.2 (DE)	5.4	1.6	76/17/8	9.7	0.4
Poelkapelle (BE)	6.0	3.8	17/66/16	19.7	0.1

! properties: P10-P90 for European soils (Reimann et al 2014)

! pH/OC correlated with Ag tox in soil (Langdon et al 2014)

TEM image

Test setup (2/3)

- Ag sampling:
 - **total** Ag in soil (*hot HNO*₃ *digestion*)
 - Ag in **porewater** (centrifugation, double chamber system)
 - <u>total</u> dissolved Ag' (filtration, <0.45 μm)
 - '*truly* dissolved Ag' (ultrafiltration, <1 kDa)
- Ag dosing:
 - 1 wk preincubation, triplicate spiking at 7-8 doses, 1 wk incubation

	Ag doses in [mg kg ⁻¹]		
	AgNO ₃	AgNP	
Rots	0 - 1536	0 - 2474	
Lufa 2.2	0 - 492	0 - 669	
Poelkapelle	0 - 3355	0 - 4563	

! No leaching cfr Langdon et al 2014

Test setup (3/3)

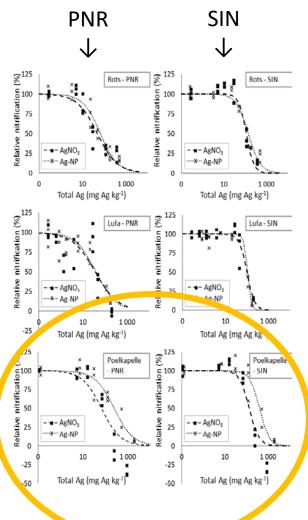
• Nitrification assay:

- addition 100 mg NH₄-N kg⁻¹
- measurement NO₃-N concentration at days 0 7 14 28
- endpoints: Potential Nitrification Rate ('PNR'; 0-14 d) and Substance Induced Nitrification ('SIN'; 0-28 d) [mg NO₃-N kg⁻¹ d⁻¹]

 $! NO_3$ added via $AgNO_3$ – exclusion data >1000 mg Ag kg⁻¹

Transformation-dissolution test:

- spiking with 50 mg Ag kg⁻¹ (as AgNO₃ or nanoAg)
- pore water sampling at days 1 4 7 14 35 97 after spiking
- total dissolved Ag (<0.45 μm) and truly dissolved Ag (<1 kDa)
- concentration dynamics fitted with a three-compartment model


$$Ag\text{-}NP \xrightarrow{k_{diss}} Ag^{+} \xrightarrow{k_{f}} Ag_{(s)}$$

Nitrification test

• Nitrification in **control soil** [*mg N kg*⁻¹ *d*⁻¹]:

	PNR	SIN
Rots	6.0	3.1
Lufa 2.2	2.9	2.5
Poelkapelle	5.7	3.0

• Nitrification decreases with increasing Ag doses:

PNR		C10 kg ⁻¹ d ⁻¹)	EC50 (in mg kg ⁻¹ d ⁻¹)	
	AgNO ₃	nanoAg	AgNO ₃	nanoAg
Rots	4.8	9.0	49	68
Lufa 2.2	3.8	3.8	36	38
Poelkapelle	8.1*	29	66*	242
*significantly different value (p<0.05)				

Nitrification test

Nitrification in control soil [mg N kg⁻¹ d⁻¹]:

	PNR	SIN
Rots	6.0	3.1
Lufa 2.2	2.9	2.5
Poelkapelle	5.7	3.0

Nitrification decreases with increasing Ag doses:

nanc Ag

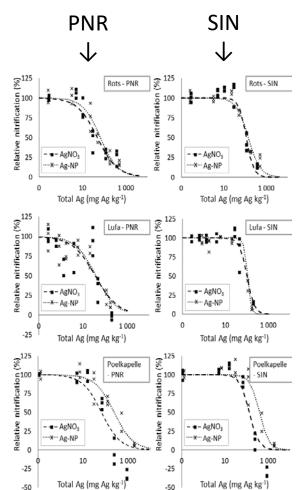
9.0

3.8

29

EC10

 $(in mg kg^{-1} d^{-1})$


ACINO3

4.8

3.8

8.1*

*significantly different value (p<0.05)

ECx nanoAg similar or higher than AgNO₃

ACINO3

49

36

66*

EC50

(in mg kg⁻¹ d⁻¹)

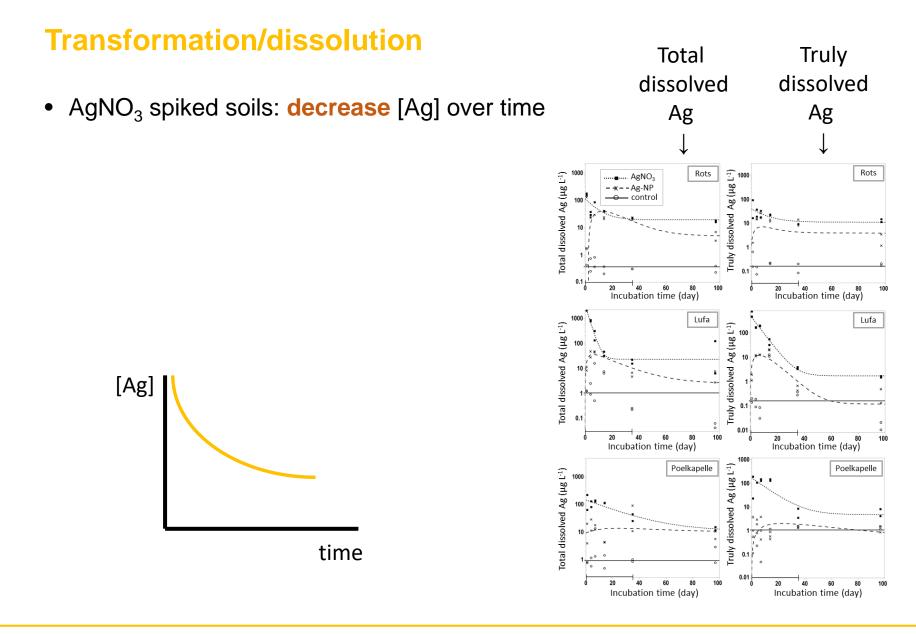
nanc.Ag

68

38

242

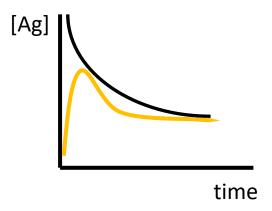
Precious Metals Consortium

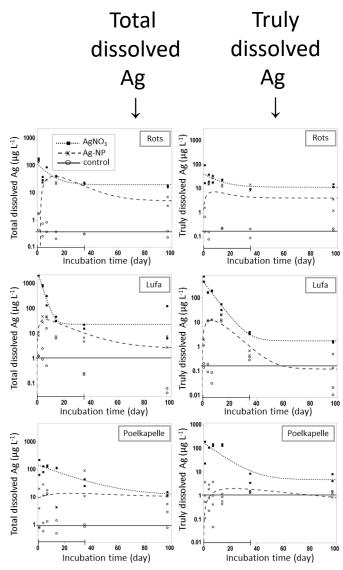

PNR

Rots

Lufa 2.2

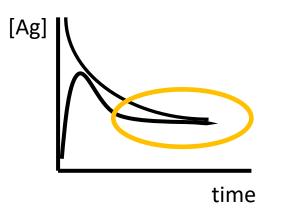
Poelkapelle

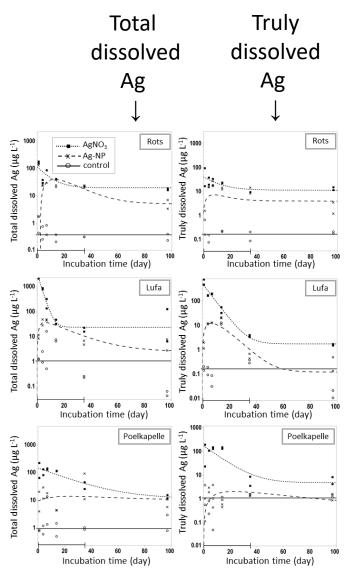

SETAC Europe, Rome, 14 May 2018



Transformation/dissolution

- AgNO₃ spiked soils: decrease [Ag] over time
- NanoAg spiked soils: initial increase, followed by decrease of [Ag]

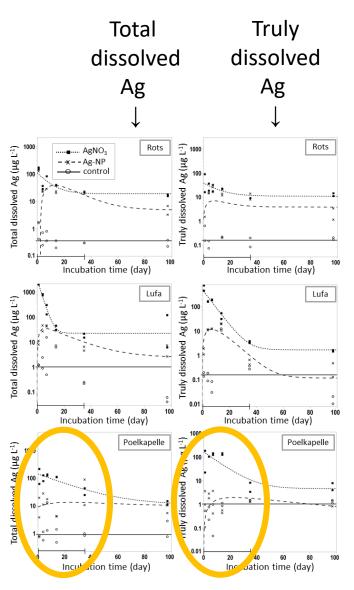




Pg13

Transformation/dissolution

- AgNO₃ spiked soils: decrease [Ag] over time
- NanoAg spiked soils: initial increase, followed by decrease of [Ag]
- Dissolved Ag initially higher in AgNO₃ vs AgNP, but similar over time

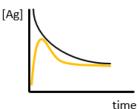


Transformation/dissolution

- AgNO₃ spiked soils: decrease [Ag] over time
- NanoAg spiked soils: initial increase, followed by decrease of [Ag]
- Dissolved Ag initially higher in AgNO₃ vs AgNP, but similar over time
- Ratio $\frac{[Ag]_{AgNO3}}{[Ag]_{nanoAg}}$ day 7-35 (= nitrification test!):

	Total diss Ag	Truly diss Ag
Rots	1.7	1.3
Lufa 2.2	3.2	8.4
Poelkapelle	15	140

Data interpretation


• ECx nanoAg ≥ AgNO₃

 \Rightarrow nanoAg equally or less toxic than AgNO₃

cfr. conclusions metastudy Notter et al (2014)

[Nitrif] AgNO₃ nanoAg Dose

- Transformation/dissolution:
 - importance of **dissolution + ageing** reactions
 - nanoAg dissolution explaining effects for Poelkapelle and Rots
 - Lufa 2.2: truly dissolved [Ag] higher for AgNO₃ than nanoAg

Data interpretation

- Pending questions:
 - role of local hotspots ??
 - further research on transformation/dissolution at multiple doses
 - porewater fractionation:
 - truly dissolved Ag = ionic Ag & small Ag complexes (org/inorg)
 - re-speciation over time
 - analytical challenges associated with Ag determination
 - need for strong dilutions
 - \rightarrow proportional contribution [Ag]_{bg} increases with dilution
 - enhanced dissolution during isolation

Pg17

Conclusions

- Experimental & analytical challenges for Ag detection (~low [Ag] at relevant test conditions)
- Importance of equilibration / ageing
- No indications of nano-effect when expressed as [Ag]_{total}
- **Dissolution** partially explaining observations
- <u>Read-across ionic Ag to nanoAg conservative!</u>

Further reading:

'Transformation-dissolution reactions partially explain adverse effects of metallic silver nanoparticles to soil nitrification in different soils'

by Bollyn et al

(accepted for publication in Environmental Toxicology and Chemistry)

THANK YOU

www.epmf.be | jelle.mertens@epmf.be

Avenue de Broqueville 12, B-1150 Brussels +32 (0)2 775 63 86