Evaluation of Effects Based Methods for Regulating Metals in Aquatic Ecosystems

Kevin Brix*, Stijn Baken, Jelle Mertens, Chris Cooper

Water Framework Directive (WFD)

- Maintain waterbodies that have good a <u>Chemical & Ecological</u> status,
- improve all of those that do not.

Chemical Status

'Priority Substances' (Ni, Pb, ...)

[Pass or fail]

Ecological Status

- Biology
- Hydro-morphology
- 'Specific Pollutants' (Cu, Zn, ...) [5 classes]

Water Framework Directive (WFD)

- It's good, but it's not perfect...
 - Link between Chemical and Ecological status?
 - Based on single substances, what about mixtures?

Chemical Status

'Priority Substances' (Ni, Pb, ...)

[Pass or fail]

Ecological Status

- Biology
- Hydro-morphology
- 'Specific Pollutants' (Cu, Zn, ...)

[5 classes]

Water Framework Directive (WFD)

- Can <u>Effect Based Methods</u> (EBMs) bridge the gap?
 - Group chemicals according to their Mode of Action (MoA)...
 - Consider exposure to multiple chemicals?
 - Link between chemical exposure and biological effect?

Chemical Status

'Priority Substances' (Ni, Pb, ...)

[Pass or fail]

- Biology
- **Hydro-morphology**
- 'Specific Pollutants'

(Cu, Zn, ...)

[5 classes]

EBM EU Comm. Working Group

• Objective:

"Examine the possible implementation of Effect Based Methods for monitoring and assessment in the WFD context, alongside traditional chemical analysis"

Work plan:

- Final draft report completed (beginning of 2019).
- Approved by WG Chemicals and SCG.
- Final report to be published and disseminated soon.
- Drafting group:
 - Activity chairs: Sweden, Italy, Switzerland, JRC.

What are EBMs??

• Lab-based assays, chemical compounds with the same MoA, that have higher level implications (population, ecological, ...).

Table I.2: Recommended modes of action (MoA) for inclusion in the WFD monitoring.

EBM=Effect-Based-Method, SOP=Standard Operating Procedure, EBT=Effect-Based-Trigger-value, SW= Surface Water, WW=Waste Water, DW=Drinking Water

MoA with proven relevance	Protection aim/ reasoning	Effect based method (EBM)	Reference compound	Standardised SOP	Defined effect based trigger value (EBT) to	Known applicability
Relevant MoA	MoA = Activation of Estrogen receptor					
Activation of estrogen receptor						W, WW, DW, ediments
Тесеріої	Reference compound = 17-beta-estradiol.					
	High level effect = Effects on reproduction.					
		MELN		Validity for ISO 19040-3 to be demonstrated	0.557 ng/l E2-equivalence	

EBMs – metals?

- For some organics, the MoA is well-defined and there are, in some cases, EBMs developed that are MoAspecific.
 - Endocrine disruptors, pesticides.
- What about metals...?

EBM metal taskforce

- Stijn Baken (ECI).
- Jelle Mertens (EPMF).
- Chris Cooper (IZA).
- Kevin Brix (EcoTox).

EBM for metals - Criteria

- A number of potentially metal-relevant MoA were selected.
- 13 MoAs/EBMs, 3 criteria:
 - 1. Specificity
 - To just metals, or other toxicants?
 - 2. Sensitivity
 - Effects at environmentally relevant concentrations or near metal EQS?
 - 3. Link to higher levels of biological organisation
 - Evidence in literature?

Oxidative Stress
Lysosomal Membrane Stability
DNA Damage
Deformities
In Vivo Testing
Cytochrome P450
Acetylcholinesterase

Bacteria Reporter Assay

Metallothionein

Ion Homeostasis

Urease

ALAD

eDNA

EBM for metals - Evaluation

Table 1. Summary of Sensitivity, Specificity, and Linkage to Individual/Population Effects for Metal EBMs

Mode of Action	Metal	Other Toxicants	Metal Sensitivity	Link to Individual/Population
	Specificity			Effects
Ion Homeostasis	Na: Ag, Cu, Pb	Pesticides,	Mixed: Effects detectable at	Strong - Demonstrated links to
	Ca: Co, Cd, Pb,	Pharmaceuticals,	concentrations near EQS in	survival and growth, but no
	Zn	Salinity	some cases but not all	links to reproduction
	Mg: Ni			demonstrated

For each MoA:

(E.g. Oxidative Stress; EBM = \downarrow anti-oxidants (superoxide dismutase, glutathione peroxidase, ...)

- Metal Specificity (As, Cd, Co, Cr, Cu, Zn,)
- Other toxicants (Pesticides, PAHs, PCBs, salinity, temp.).
- Metal Sensitivity (near EQS for some metals).
- Higher level effects (Weak: No studies link to individ./pop.).

EBM for metals - Evaluation

Mode of Action	Metal Specific?	Metal Sensitivity?	Population/Ecological?
Ion Homeostasis			
Oxidative Stress			
LMS			
DNA Damage			
Deformities			
Cytochrome P450			
AChE			
Urease			
Bacteria Reporter Assay			
ALAD			
Metallothionein			
eDNA			
In Vivo testing			

EBM for metals - Evaluation

Mode of Action	Metal Specific?	Metal Sensitivity?	Population/Ecological?
Ion Homeostasis	N	Some	Strong
Oxidative Stress	N	Some	Weak
LMS	N	One	Moderate
DNA Damage	N	~x10 EQS	Weak
Deformities	N	Some	Strong
Cytochrome P450	N	~x10 EQS	Weak
AChE	N	One	Strong
Urease	N	Some	Moderate
Bacteria Reporter Assay	Y	Some	Weak
ALAD	Y	One	Weak
Metallothionein	N	Some	Weak
eDNA	N	Yes	Strong
In Vivo testing	N	Some	Strong

Conclusions (1/2)

- For those MoAs/EBMs selected for metals:
 - No EBMs met all 3 criteria.
 - ALAD and the bacteria reporter assay = only EBMs that are specific to metals.
 - ➤ Not representative of population/ecological level effects...
- So, for metals, continue with traditional methods.
 - Routinely measured.
 - Relatively easy & cheap.

Conclusions (2/2)

- EBMs work well for some groups of substances.
 - Endocrine disruptors, plenty of literature.
- Some countries use EBMs as a weight of evidence approach.
- Relatively cost effective.
- Future for EBMs?
 - Use as a screening tool.
 - Integrate into the Ecological Status.

Thank you for your attention!

Kevin Brix (Ecotox).

Metals Environmental Research Associations

